domingo, 12 de octubre de 2008

BUS SECUNDARIO DE ALTA FRECUENCIA

BUS DE MEMORIA
NOMBRE ESTANDAR
VELOCIDAD DEL RELOG DE E/S NOMBRE DE MODULO MAXIMA CAPACIDAD DE TRANSFERENCIA
DDR200 100MHz PC1600 1600MB/s
DDR266 133MHz PC2100 2100MB/s
DDR333 166MHZ PC2700 2700MB/S
DDR400 200MHz PC3200 3200MB/s
DDR2-533 266MHz PC2-4200 4200MB/s
DDR2-600 300MHz PC2-4800 4800MB/s
DDR2-667 333MHz PC2-5300 5300MB/s
DDR2-800 400MHz PC2-6400 6400MB/s
DDR3-800 400MHz PC3-6400 6400MB/s
DDR3-1066 533MHz PC3-8500 8500MB/s
DDR3-1333 667MHz PC3-10600 10600MB/s
DDR3-1600 800MHz PC3-12800 12800MB/s


La memoria de acceso aleatorio, o memoria de acceso directo (en inglés: Random Access Memory, cuyo acrónimo es RAM), o más conocida como memoria RAM, se compone de uno o más chips y se utiliza como memoria de trabajo para programas y datos. Es un tipo de memoria temporal que pierde sus datos cuando se queda sin energía (por ejemplo, al apagar la computadora), por lo cual es una memoria volátil. Esto es cierto desde el punto de vista teórico: Científicos de la Universidad de Princeton han descubierto que una destrucción gradual de los datos almacenados en la memoria RAM que oscila entre unos segundos y varios minutos, siendo inversamente proporcional a la temperatura. Esto puede significar una brecha en la seguridad en tanto que las claves de acceso de cifradores de información como BitLocker quedan almacenadas en la memoria RAM.

La denominación surgió antiguamente para diferenciarlas de las memoria de acceso secuencial. Debido a que en los comienzos de la computación las memorias principales (o primarias) de las computadoras eran siempre de tipo RAM y las memorias secundarias (o masivas) eran de acceso secuencial (cintas o tarjetas perforadas), es frecuente que se hable de memoria RAM para hacer referencia a la memoria principal de una computadora, pero actualmente la denominación no es demasiado acertada.

Se trata de una memoria de semiconductor en la que se puede tanto leer como escribir información. Se utiliza normalmente como memoria temporal para almacenar resultados intermedios y datos similares no permanentes. Se dicen "de acceso aleatorio" o "de acceso directo" porque los diferentes accesos son independientes entre sí (no obstante, el resto de memorias ROM, ROM borrables y Flash, también son de acceso aleatorio). Por ejemplo, si un disco rígido debe hacer dos accesos consecutivos a sectores alejados físicamente entre sí, se pierde un tiempo en mover la cabeza lecto-grabadora hasta la pista deseada (o esperar que el sector pase por debajo, si ambos están en la misma pista), tiempo que no se pierde en la RAM. Sin embargo, las memorias que se encuentran en la computadora, son volátiles, es decir, pierde su contenido al desconectar la energía eléctrica ; pero hay memorias (como la memoria RAM flash), que no lo son porque almacenan datos.

En general, las RAMs se dividen en estáticas y dinámicas. Una memoria RAM estática mantiene su contenido inalterado mientras esté alimentada. En cambio en una memoria RAM dinámica la lectura es destructiva, es decir que la información se pierde al leerla, para evitarlo hay que restaurar la información contenida en sus celdas, operación denominada refresco.
Además, las memorias se agrupan en módulos, que se conectan a la placa base de la computadora. Según los tipos de conectores que lleven los módulos, se clasifican en módulos SIMM (Single In-line Memory Module), con 30 ó 72 contactos, módulos DIMM (Dual In-line Memory Module), con 168 contactos (SDR SDRAM), con 184 contactos (DDR SDRAM), con 240 contactos (DDR2 SDRAM) y módulos RIMM (RAMBUS In-line Memory Module) con 184 contactos.

El Bus PCI Express



El bus PCI Express (Interconexión de Componentes Periféricos Express, también escrito PCI-E o 3GIO en el caso de las "Entradas/Salidas de Tercera Generación"), es un bus de interconexión que permite añadir placas de expansión a un ordenador. El bus PCI Express fue desarrollado en julio de 2002. A diferencia del bus PCI, que se ejecuta en una interfaz paralela, el bus PCI Express se ejecuta en una interfaz en serie, lo que permite alcanzar un ancho de banda mucho mayor que con el bus PCI.

Características del Bus PCI Express


El bus PCI Express se presenta en diversas versiones (1X, 2X, 4X, 8X, 12X, 16X y 32X), con rendimientos de entre 250 Mb/s y 8 Gb/s, es decir, 4 veces el rendimiento máximo de los puertos AGP 8X. Dado que el costo de fabricación es similar al del puerto AGP, es de esperar que el bus PCI Express lo reemplace en forma progresiva.


Cada slot de expansión lleva uno, dos, cuatro, ocho, dieciséis o treinta y dos enlaces de datos entre la placa base y las tarjetas conectadas. El número de enlaces se escribe con una x de prefijo (x1 para un enlace simple y x16 para una tarjeta con dieciséis enlaces. Treinta y dos enlaces de 250MB/s dan el máximo ancho de banda, 8 GB/s (250 MB/s x 32) en cada dirección para PCIE 1.1. En el uso más común (x16) proporcionan un ancho de banda de 4 GB/s (250 MB/s x 16) en cada dirección. En comparación con otros buses, un enlace simple es aproximadamente el doble de rápido que el PCI normal; un slot de cuatro enlaces, tiene un ancho de banda comparable a la versión más rápida de PCI-X 1.0, y ocho enlaces tienen un ancho de banda comparable a la versión más rápida de AGP.

Conectores PCI Express

Los conectores PCI Express no son compatibles con los conectores PCI más antiguos. Varían en tamaño y demandan menos energía eléctrica. Una de las características más interesantes del bus PCI Express es que admite la conexión en caliente, es decir, que puede conectarse y desconectarse sin que sea necesario apagar o reiniciar la máquina. Los conectores PCI Express son identificables gracias a su tamaño pequeño y su color gris oscuro.


El conector PCI Express 1X posee 36 clavijas, y está destinado a usos de entrada/salida con un gran ancho de banda


El conector PCI Express 4X posee 64 clavijas y tiene como finalidad el uso en servidores:

El conector PCI Express 8X posee 98 clavijas y tiene como finalidad el uso en servidores:

El conector PCI Express 16X posee 164 clavijas, mide 89 mm de largo, y tiene como finalidad el uso en el puerto gráfico:

El PCI Express estándar también tiene como finalidad reemplazar la tecnología PC Card, mediante conectores "PCI Express Mini Card". Además, a diferencia de los conectores PCI, que sólo pueden utilizarse para establecer conexiones internas, el PCI Express estándar puede utilizarse para conectar periféricos externos mediante el uso de cables. A pesar de ello, no compite con los puertos USB ni FireWire.



Introducción al Bus AGP


El bus AGP (la sigla corresponde a Accelerated Graphics Port que en español significa puerto de gráficos acelerado) apareció por primera vez en mayo de 1997 para los chipsets Slot One. Luego se lanzó para los chips Super 7, con el objetivo de administrar los flujos de datos gráficos que se habían vuelto demasiado grandes como para ser controlados por el Bus PCI. De esta manera, el bus AGP se conecta directamente al FSB (Front Side Bus [Bus Frontal]) del procesador y utiliza la misma frecuencia, es decir, un ancho de banda más elevado.


La interfaz AGP se ha creado con el único propósito de conectarle una tarjeta de video. Funciona al seleccionar en la tarjeta gráfica un canal de acceso directo a la memoria (DMA, Direct Memory Access), evitado así el uso del controlador de entradas/salidas. En teoría, las tarjetas que utilizan este bus de gráficos necesitan menos memoria integrada ya que poseen acceso directo a la información gráfica (como por ejemplo las texturas) almacenadas en la memoria central. Su costo es aparentemente inferior.

La versión 1.0 del bus AGP, que funciona con 3.3 voltios, posee un modo 1X que envía 8 bytes cada dos ciclos y un modo 2X que permite transferir 8 bytes por ciclo.
En 1998, la versión 2.0 del bus AGP presenta el AGP 4X que permite el envío de 16 bytes por ciclo. La versión 2.0 del bus AGP funciona con una tensión de 1.5 voltios y con conectores AGP 2.0 "universales" que pueden funcionar con cualquiera de los dos voltajes.
La versión 3.0 del bus AGP apareció en 2002 y permite duplicar la velocidad del AGP 2.0 proponiendo un modo AGP 8X.

Características del bus AGP


El puerto AGP 1X funciona a una frecuencia de 66 MHz, a diferencia de los 33 MHZ del Bus PCI, lo que le provee una tasa máxima de transferencia de 264 MB/s (en contraposición a los 132 MB/s que comparten las diferentes tarjetas para el bus PCI). Esto le proporciona al bus AGP un mejor rendimiento, en especial cuando se muestran gráficos en 3D de alta complejidad.


Con la aparición del puerto AGP 4X, su tasa de transferencia alcanzó los 1 GB/s. Esta generación de AGP presentó un consumo de 25 vatios. La generación siguiente se llamó AGP Pro y consumía 50 vatios.
El AGP Pro 8x ofrece una tasa de transferencia de 2 GB/s.
Las tasas de transferencia para los diferentes estándares AGP son las siguientes:
AGP 1X : 66,66 MHz x 1(coef.) x 32 bits /8 = 266,67 MB/s
AGP 2X : 66,66 MHz x 2(coef.) x 32 bits /8 = 533,33 MB/s
AGP 4X : 66,66 MHz x 4(coef.) x 32 bits /8 = 1,06 GB/s
AGP 8X : 66,66 MHz x 8(coef.) x 32 bits /8 = 2,11 GB/s

Se debe tener en cuenta que las diferentes normas AGP son compatibles con la versión anterior, lo que significa que las tarjetas AGP 4X o AGP 2X pueden insertarse en una ranura para AGP 8X.

Conectores AGP

Las placas madre más recientes poseen un conector AGP general incorporado identificable por su color marrón. Existen tres tipos de conectores:
Conector AGP de 1,5 voltios:

Conector AGP de 3,3 voltios:


Conector AGP universal:





No hay comentarios: